CRISTAL common practices for bar coding and labelling of agro products
Contents

1 Executive Summary ... 4

2 Introduction to CRISTAL .. 5
 2.1 The GS1 System .. 5

3 Benefits of Implementation .. 8

4 How to Number and Bar Code Trade Items ... 9
 4.1 Definition of Trade Item .. 9
 4.2 Difference between Numbering and Bar Coding .. 10
 4.2.1 Numbering ... 10
 4.2.2 Bar Coding ... 10
 4.3 Fixed Measure Trade Items – Consumer Unit ... 11
 4.4 Fixed Measure Trade Items – Shipper ... 12
 4.4.1 Definition .. 12
 4.4.2 Options for Trade Items – Shipper .. 12
 4.4.2.1 GTIN-13 .. 12
 4.4.2.2 GTIN-14 .. 13
 4.5 Concatenation of Data Elements ... 14
 4.6 Electronic Product Code and Radio Frequency Identification ... 15
 4.6.1 Electronic Product Code (EPC) .. 15
 4.6.2 Radio Frequency Identification (RFID) .. 16
 4.7 Numbering, Bar Coding and packaging levels for the Agro Industry ... 18

5 How to Number and Bar Code Logistic Units .. 19
 5.1 Serial Shipping Container Code (SSCC) .. 19
 5.2 How to Allocate the Serial Shipping Container Code (SSCC) .. 20
 5.3 The Logistics Label ... 21
 5.3.1 Components of the GS1 Logistics Label .. 21
 5.3.2 Label Design ... 22
 5.3.3 Label Dimensions ... 23
 5.3.4 Technical Specifications ... 23
 5.3.4.1 Bar Codes .. 23
 5.3.4.2 Bar Code Orientation and Placement .. 23
 5.3.4.3 Text ... 23
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>The GS1 System</td>
<td>6</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Global Trade Item Number GTIN - Formats</td>
<td>9</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Difference between Key and Data Carrier</td>
<td>10</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Format of GTIN-13</td>
<td>11</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Example of a trade item carrying a GTIN-13 represented in an EAN-13 Bar Code</td>
<td>11</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Multiple Layers of Units</td>
<td>12</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Structure of GTIN-14 based on GTIN-13</td>
<td>13</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Dynamic data used for traceability</td>
<td>14</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Serialized GS1 Identification Numbers</td>
<td>15</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Compatibility of Bar Code and EPC/RFID</td>
<td>16</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Layout of an UHF Gen 2 EPC/RFID Tag</td>
<td>17</td>
</tr>
<tr>
<td>Figure 12</td>
<td>The use of the SSCC throughout the supply chain</td>
<td>19</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Structure of the SSCC</td>
<td>20</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Example of trade unit label</td>
<td>22</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Example of a Logistics Label</td>
<td>27</td>
</tr>
<tr>
<td>Figure 16</td>
<td>Location of the GS1 Logistics Label on a carton or unit less than 1 metre in height</td>
<td>28</td>
</tr>
<tr>
<td>Figure 17</td>
<td>Location of the GS1 Logistics Label on pallets</td>
<td>28</td>
</tr>
</tbody>
</table>
1. Executive Summary

Agribusiness supply chains benefit from traceability systems if they are able to create interoperability using a common ‘language’. The plant science industry, represented by CropLife International, recommends using CRISTAL (Communicating Reliable Information Systems To Agriculture and Logistics) as a common practice to ensure traceability throughout the supply chain.

Individual companies which choose to adopt the traceability system are likely to achieve high levels of customer satisfaction due to increased transparency, and efficiency gains due to fast, accurate and timely information about production, distribution and consumption. The plant science industry, and ultimately the farmers and consumers of agricultural products, will also benefit from a resulting improved ability to combat counterfeiting and illegal trade with crop protection products. Enhancement of common traceability practices such as CRISTAL allows the implementation of a full supply chain visibility helping to significantly improve product safety and stewardship and providing new services.

The need for a highly responsive supply chain is driving the development of communication techniques. Technologies such as automatic data capture (through the use of bar coding or RFID), electronic messaging, and data synchronization are essential for this communication. Nothing is more central to the effectiveness of a supply chain than the ability to transmit accurate, relevant, understandable and timely information among its participants.

To this end, the plant science industry seeks to adopt supply chain numbering and bar coding standards as defined by GS1 which should enable stakeholders within the supply chain to achieve interoperability.

CRISTAL recommendations were initially designed to enable electronic commerce in the plant science industry, and their development started at the European Crop Protection Association in 1998. Today, they reflect a state of the art technology which can be used to implement a full supply chain visibility. CRISTAL is open to all plant science companies, partners in the supply chain and other related organizations. CRISTAL common practices are a set of recommendations resulting from existing GS1 standards are best practices. They are open to third parties and should facilitate interoperability.
2. Introduction to CRISTAL

Three core technologies are required to support traceability across the supply chain:

- Electronic Data Interchange (EDI) to transport the data between organizations;
- identification codes to provide the links to the meaning of the data communicated using EDI;
- bar codes to connect the data communicated with the physical goods transported between parties.

This document defines common practices for the use of bar codes and the labelling of products which will be followed by the manufacturers of crop protection products involved in traceability implementation. The common practices are based on GS1 codification and were agreed as suitable by members of the Traceability/CRISTAL Project Team operating under CropLife International to achieve traceability and interoperability across the supply chain. The primary purposes of the document are to define:

- common practices for bar coding
- common practices for the labelling of products towards which the manufacturers will work, taking into account the constraints imposed by current manufacturing processes.

These common practices are designed to help business partners (manufacturers, carriers, distributors and retailers) to build traceability tools which are business to business oriented.

There are further documents which define common practices for Electronic Data Interchanges (EDI) messages which will be used in conjunction with the common practices defined in this document.

The recommended basic common practices for electronic data exchange is EDIFACT edited by the United Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT). This organization releases international EDI Electronic Data Interchange standards for electronic trade documents in XML format.

http://www.unece.org/cefact.html

The implantation of EDI trade messages within the agricultural supply chain in France is one example of a common approach between all involved parties.

There are also compatible sub standards in use such as EANCOM or GS1 XML. More information is available in separate documents.

http://www.gs1.org

2.1 The GS1 System

The GS1 System permits organizations of any size to order, track, trace, deliver and pay for goods across the supply chain, anywhere in the world.

As illustrated in Figure 1, GS1 Solutions and Services using the GS1 System include:

GS1 Identification Keys

GS1 Identification Keys are the keys to accessing information about a product (or any physical or non-physical item) on a computer file. The numbers are unique, non-significant and global. They can be allocated to trade items, logistic units, locations, assets, shipments, consignments, documents and service relationships. The main elements of the numbering system are GTIN, SSCC, GLN and the Attribute Data. Please contact GS1 for a full list of a GS1 Identification Keys.
Bar Codes
Within the GS1 System, data carriers (most commonly bar codes) are used to encode the GS1 Identification Keys to facilitate communication, data collection and exchange of information and smooth the flow of information between trading partners at various levels of the supply chain.

eMessaging
GS1 EANCOM and GS1 XML are based on the principle of the transfer of structured data, using agreed messaging standards from one computer application to another by electronic means and with a minimum of human intervention. The structure and data content are exchanged by agreed means by trading partners. The electronic exchange of data or eMessaging provides trading partners with an efficient trading tool for the transmission of data.

Figure 1: The GS1 System

IDENTIFY
GS1 Identification Keys & Attributes

<table>
<thead>
<tr>
<th>Product</th>
<th>Location/Legal entity</th>
<th>Logistic unit</th>
<th>Asset</th>
<th>Document</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Trade Item Number (GTIN)</td>
<td>Global Location Number (GLN)</td>
<td>Serial Shipping Container Code (SSCC)</td>
<td>Global Returnable Asset Identifier (GRAI)</td>
<td>Global Document Type Identifier (GDTI)</td>
</tr>
<tr>
<td>Optional GTIN attributes such as lot number, serial number, expiration date</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CAPTURE
GS1 BarCodes and EPCglobal RFID

<table>
<thead>
<tr>
<th>EAN/UPC</th>
<th>ITF-14</th>
<th>GS1 DataBar</th>
<th>GS1 DataMatrix</th>
<th>EPC/RID</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SHARE

<table>
<thead>
<tr>
<th>Master data</th>
<th>Transactional data</th>
<th>Physical event data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Data Synchronisation Network (GDSN)</td>
<td>Electronic business messaging GS1 XML or EANCOM</td>
<td>EPC Information Services (EPCIS)</td>
</tr>
</tbody>
</table>
GS1 GDSN
The GS1 Global Data Synchronisation Network (GDSN) is a concept developed by various industry groups, including Global Commerce Initiative (GCI) and GS1 to assist industries streamline their supply chain transactions with the aim of reducing supply chain costs. The GS1 GDSN is an internet based interconnected network of interoperable data posted to a global registry that enables companies around the globe to exchange and synchronise supply chain master data with their trading partners. SA2 World Sync is the GDSN Data Pool run by a subsidiary of GS1.

EPCglobal
The EPC (Electronic Product Code) Network is an open standards-based system that will make organizations more effective through real and timely visibility of information about items in the supply chain. This new, open global standard combines Radio Frequency Identification technology (RFID), existing communications network infrastructure and the EPC (a number for uniquely identifying an item) to create cost-efficient, real-time, accurate information about the location of items, the history of items, and the number of items in the supply chain. It is based on research conducted through the Auto-ID Centre with the support of more than 100 leading companies.
3. Benefits of Implementation

Using a harmonized common approach to the numbering and bar coding of trade items, logistic units, locations, assets, and documents, amongst others, will deliver the benefits of speed, accuracy and labour savings in the handling and distribution of goods throughout the entire agribusiness supply chain. Companies should consider that the implementation of the GS1 standards is applicable not only to meet customer or trading partner demands but also to improve internal supply chain management. The benefits listed below are defined generically for users throughout the entire supply chain and not just the end user.

Individual companies which choose to adopt the traceability system are likely to achieve high levels of customer satisfaction due to increased transparency, and efficiency gains due to fast, accurate and timely information about production, distribution and consumption.

The plant science industry, and ultimately the farmers and consumers of agricultural products, will also benefit from an improved ability to combat counterfeiting and illegal trade with crop protection products. Enhancement of common traceability practices such as CRISTAL allows the implementation of a full supply chain visibility helping to significantly improve product safety and stewardship and providing new services.

Some of the specific identified benefits are:

- Traceability helps farmers to use registered crop protection products in the right quality and protects against the use of illegal products with unknown contents – an important step to produce safe and healthy food
- Supports supply chain agility from production to end users: Improved traceability creates the possibility of product recall, relabeling and withdrawal
- Interoperability across the supply chain through standardized information and messages
- Possibility for companies to enhance their Total Quality Management
- Reduces product obsolescence along the distribution chain
- Creates new opportunities for each company in their Customer Relationship Management.
4. How to Number and Bar Code Trade Items

4.1 Definition of Trade Item

A trade item is any item (product or service) upon which there is a need to retrieve pre-defined information and that may be priced or ordered or invoiced at any point in any supply chain. This definition covers raw materials through to the end user products and also includes services, all of them having pre-defined characteristics.

A trade item may be a single, non-breakable unit and is identified with a Global Trade Item Number (GTIN); it may also be a standard and stable grouping of a series of single items. Such a unit may be presented in a wide variety of physical forms: a fibreboard carton, a covered or banded pallet, a film-wrapped tray, a crate with bottles, etc. Trade items consisting of single units are also identified with a unique GTIN; standard groupings of identical or different units are identified with separate unique GTINs.

The GTIN can be represented in one of the following ways:
- GTIN-8
- GTIN-12
- GTIN-13
- GTIN-14

A separate GTIN must be assigned to every different variation of a product. Size, style, grade, colour, etc are all considered separate variations and thus require separate GTINs.

Any change to trade items, such as weight, description, etc. may require the allocation of another GTIN. In this event consult www.gs1.org and follow the links to “GTIN Allocation Rules” for guidance on when a change of GTIN is required, or contact your local GS1 organization for further information.

Figure 2: Global Trade Item Number GTIN - Formats

<table>
<thead>
<tr>
<th>Data Structures</th>
<th>GTIN right justified in a 14-digit numeric field</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T₁</td>
</tr>
<tr>
<td>GTIN-14</td>
<td>N₁</td>
</tr>
<tr>
<td>GTIN-13</td>
<td>0</td>
</tr>
<tr>
<td>GTIN-12</td>
<td>0</td>
</tr>
<tr>
<td>GTIN-8</td>
<td>0</td>
</tr>
</tbody>
</table>

¹GTIN-8 may be required if your trade item is too small to carry a GTIN-13. Please contact your local GS1 organization.

²GTIN-12 may be required if your trade item is sold within the USA or Canada.
When allocating GTINs in any of the formats described in the following sections, GS1 recommends that no significance is created within the GTIN itself. Data is linked via a database to the GTIN, thus no level of understanding is required within the number itself.

Note: A GTIN allocated to a trade item that has become obsolete must not be re-used for another trade item until at least 48 months (4 years) elapsed after:
- The expiration date of the last original trade items produced with that GTIN, or
- The last original trade items produced with that GTIN have been supplied to the customer.

Companies may choose to extend the period of time before a GTIN is re-used beyond the minimum of four years; this is perfectly acceptable.

Consideration should be given to items which may exist in the marketplace for a longer period. For example, steel beams may be stored for many years before entering the supply chain, and processes should be put in place to ensure that the GTIN is not reallocated for a significant period of time.

In addition, when contemplating the re-use of a GTIN, consideration should be given to the use of data associated with the original GTIN by trading partners for statistical analysis or service records, which may continue long after the original trade item was last supplied.

4.2 Difference between Numbering and Bar Coding

The GS1 System makes a clear distinction between numbering and bar coding. Even though they often go together, it is very important to be clear about the difference.

4.2.1 Numbering

The GS1 System provides Identification Keys (the 'Numbers') for different applications. The application will determine how the number is to be used. The data structure of the GS1 Identification Keys guarantees worldwide uniqueness within the relevant area of application. There are nine GS1 Identification Keys that support the identification of trade items, logistic units, shipments, consignments, locations, documents, service recipients, individual assets, and returnable assets. Each of the GS1 Identification Keys provides a link between the items and information pertaining to them.

4.2.2 Bar Coding

All of the GS1 Identification Keys ('numbers') used in the GS1 System can be represented in data carriers and of these, bar codes are the most commonly used. Bar codes are a means of representing data in machine readable form, and allow automatic data capture at each point where an item leaves or enters premises.

With improvements in the technology and new application requirements, new data carriers such as GS1 DataMatrix and EPC/RFID have been introduced.

Bar codes are usually included in the production process, at the producer site. They may be pre-printed with other information present on the packaging, a label can be affixed to the item at the production line, or they can be printed directly onto the packaging online.

Figure 3: Difference between Key and Data Carrier

![Figure 3: Difference between Key and Data Carrier](image-url)
4.3 Fixed Measure Trade Items – Consumer Unit

In general this is the lowest level of packaging as sold at retail level. It could be a pack, a multi-pack or a twin pack. Any trade item which is intended to be sold to the final consumer through retail Point-of-Sale (POS) is more commonly known as a retail Item or consumer unit.

Consumer units can be identified with a GTIN-13 as described in the following section.

The format of the GTIN-13 is:

Figure 4: Format of GTIN-13

<table>
<thead>
<tr>
<th>GS1 Company Prefix Item reference</th>
<th>Check Digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_1 N_2 N_3 N_4 N_5 N_6 N_7 N_8 N_9 N_10 N_11 N_12</td>
<td>N_{13}</td>
</tr>
</tbody>
</table>

GS1 Company Prefix: The GS1 Company Prefix is allocated by GS1 Member Organizations. In Germany, GS1 Germany allocates seven-, eight- or nine-digit GS1 Company Prefixes.

Item Reference: A unique non-significant number for each individual trade item. Generally issued sequentially, 000, 001, 002 etc for each different variant of a product.

Check Digit: Validates the accuracy of the entire number by mathematical formula.

A GTIN-13 can be represented in an EAN-13.

Figure 5: Example of a trade item carrying a GTIN-13 represented in an EAN-13 Bar Code
4.4 Fixed Measure Trade Items – Shipper

4.4.1 Definition
This is the lowest grouping of consumer units traded between manufacturers and distributors. Shippers, cartons and cases are typical trade units. It can be either a single item or any standard grouping of items made up to facilitate the operations of handling, storing, order preparation, shipments etc.

It is recognised that beyond the consumer unit, there can be many different levels of packaging of trade items. The next level of packaging is often referred to as an inner or intermediate pack. The last level of packaging (the outermost) is considered to be the highest level; this is up to but not including the pallet. However, this does not preclude suppliers from issuing GTINs to pallets if they wish to identify the pallet itself as a trade item.

Note: Each individual level of trade item must be uniquely identified with a different GTIN.

4.4.2 Options for Trade Items – Shipper
A trade item not sold at retail POS can be numbered and bar coded with:
- GTIN-13 represented in an EAN-13 or GS1 DataMatrix
- GTIN-14 represented in GS1 DataMatrix

4.4.2.1 GTIN-13
If desired, a GTIN-13 can be allocated to a trade item. The method used to allocate this number is the same as for allocating a number to a consumer unit.

GTIN-13 can be encoded in a GS1 DataMatrix, provided that a leading zero is added in front of the GTIN-13.
4.4.2.2 GTIN-14
This option is only available for homogenous groupings of standard trade items, where all units contained in the group are identical. It involves using an Indicator with the GTIN and recalculating the Check Digit.

An Indicator can be any number from one to eight. Indicators are used to create up to eight unique GTIN-14s to distinguish between different packaging levels or pack quantities of the same trade item. They are chosen at the discretion of the company allocating the number.

Note: The Indicator 9 is reserved for variable measure trade items

How to form a GTIN-14 if a Consumer Unit Carries a GTIN-13
Choose the GTIN-13 on the consumer unit that is the lowest level of packaging within the packaging hierarchy. To form the GTIN-14, put an Indicator in front of the first twelve digits of this GTIN-13 then recalculate the Check Digit. A Check Digit Calculator Program is available on the website http://www.gs1.org

Figure 7: Structure of GTIN-14 based on GTIN-13

<table>
<thead>
<tr>
<th>Item</th>
<th>GTIN</th>
<th>Bar Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer unit/retail item</td>
<td>GTIN-13 401234512345 6</td>
<td>EAN-13 and GS1 DataMatrix</td>
</tr>
<tr>
<td>Box of 20 identical consumer units</td>
<td>1 401234512345 3</td>
<td>GS1-128 or GS1 DataMatrix</td>
</tr>
<tr>
<td>Box of 50 identical consumer units</td>
<td>2 401234512345 0</td>
<td>GS1-128 or GS1 DataMatrix</td>
</tr>
</tbody>
</table>

Note: Only allowed with identical products in the trade unit.
Objective is to switch linear barcodes to 2d datamatrix codes. This will take several years transitional period.
Dynamic Data of Trade Items

Dynamic data of trade items is any data over and above the item identifier, i.e. the GTIN. Examples of this type of information include batch numbers, serial numbers and variable measure information such as length, weight etc.

Dynamic data is represented by GS1 Application Identifiers (AIs) and these ensure that the dynamic data can be interpreted unambiguously by trading partners throughout the entire supply chain.

Important for retail Point-of-Sale scanning

The GTIN is encoded in an EAN-13 bar code. The dynamic data, such as expiry date, batch number or serial number are encoded in an additional code, e.g. a GS1 Data Matrix code.

At the POS not all scanners are currently ready to read 2D matrix codes as well; nevertheless the CRISTAL team strongly believes that future scanners will have this option as standard.

For further information regarding the use of Application Identifiers please contact your local GS1 organization.

Suppliers, at their discretion, can apply to items any of the AIs available to them under the GS1 specifications.

Example:

Figure 8: Dynamic data used for traceability

![Dynamic data used for traceability](image)

(17)100203(10)AB1234

EXPIRY: 3.2.2010
BATCH/LOT: AB1234

Brand X

4.5 Concatenation of Data Elements

All GS1 bar code symbologies that use GS1 Application Identifiers allow several Element Strings to be encoded in one bar code, a process called concatenation. Concatenation is advantageous because it means that the symbology elements are only needed once, and the space required for the symbol is smaller than when separate bar codes are used to encode each Element String. It also improves scanning accuracy, allowing for single scanning rather than multiple scanning. The various Element Strings can be transmitted from the bar code reader as a single full string.

The various Element Strings, which are transmitted from concatenated bar codes, have to be analyzed and processed. Element Strings that are of variable length and do not appear at the end of the symbol (encoded immediately before the Symbol Check Character) must be delimited to separate them from the Element String that follows. Concatenating Element Strings of variable length involves the use of a Separator Character. The Separator Character used is the Function 1 Symbol Character (FNC1). It is placed immediately after the last symbol character of a variable length data string and is followed by the Application Identifier of the next Element String. If the Element String is the last to be encoded, the FNC1 Separator Character is not required.
4.6 Electronic Product Code and Radio Frequency Identification

The use of EPC and RFID technology are potential future technologies but need to be further developed for industrial use in crop protection industry. In the following the term EPC refers to the serialized GTIN when talking about trade items and to the serial shipping container code when talking about logistic units.

Figure 9: Serialized GS1 Identification Numbers

<table>
<thead>
<tr>
<th>SGTIN</th>
<th>Serialized Global Trade Item Number (trade items, e.g.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSCC</td>
<td>Serial Shipping Container Code (shipping units, e.g.)</td>
</tr>
<tr>
<td>SGLN</td>
<td>Serialized Global Location Number (precise shelf locations, read points, etc.)</td>
</tr>
</tbody>
</table>
In the following the term EPC refers to the serialized GTIN when talking about trade items and to the serial shipping container code when talking about logistic units.

The data carrier for the EPC is not necessarily RFID, although it is often equalized. RFID is just one data carrier beside bar codes.

It is important to comprehend the compatibility of GS1’s data carrier portfolio. Thus, it is possible to encode an EPC not only on a RFID tag, but also in a GS1 DataMatrix or a GS1-128. Nevertheless, as an EPC always requires serialization, other bar codes such as EAN-13 are not feasible in order to encode an EPC. The following figure displays GS1’s data carrier compatibility using the example of RFID and GS1-128:

4.6.2 Radio Frequency Identification (RFID)
RFID is a technology utilizing radio waves to transfer data between a reader and a RFID transponder. It has significant advantages such as (for instance) bulk and non-contact reading.

For redundancy purposes, it is advisable to apply a bar code on objects an EPC/RFID tag has been attached to. Thus, the EPC can be read in case the RFID transponder is no longer operational. Moreover, this backup information can be used for commissioning a new RFID tag with the identical EPC for the affected object.
The following figure displays the general layout of an UHF Gen2 EPC/RFID Tag:

Figure 11: Layout of an UHF Gen 2 EPC/RFID Tag

- **00 Reserved**
 - “Kill” password (optional)
 - Access password (optional)

- **01 EPC**
 - Cyclic Redundancy Check-16
 - Protocol Control (PC) Bits inkl. “Hazmats” Bit
 - Electronic Product Code
 - Extended Protocol Control Bits (XPC)

- **10 TID**
 - issued by chip manufacturer
 - not for product identification purposes
 - extended TID (XTID) offers optional serialization

- **11 User**
 - supplementary information
 - EPCglobal Tag Data Standards 1.5 (Aug 2010) supports GS1 Application Identifiers (AIs) as well as ISO Data Identifiers (DIs)

For end users, the most relevant memory banks of Gen2 EPC/RFID-Tags are the EPC and User Memory bank as the first one contains the EPC (such as a SGTIN; SSCC, etc.) along with some control information, whereas the second one offers the opportunity to encode all kinds of data elements according to GS1’s Application Identifier (AI) concept (for instance, “AI 10” for batch/lot, “AI 11” for production date).

A useful feature in addition to the EPC (see 4.6.1) is the filter value, which enables RFID readers to select or deselect RFID tags corresponding to certain logistic levels (for instance, to make it easier just to read RFID tags identifying a pallet while disregarding all item level tags on those pallets). Please note that the filter value is not part of the EPC. Moreover, in case of the SGTIN EPC, the filter value does not equate to the GTIN indicator as these two concepts have been specified for totally different purposes. Thus, the filter value (i.e. the logistic level) of objects which are supposed to be equipped with a RFID tag has to be maintained as an attribute in the master data.
4.7 Numbering, Bar Coding and packaging levels for the Agro Industry

The Agro Industry supports the use of dynamic data in the supply chain. The CRISTAL Project team recommend the following:

Guide to choosing the numbering and bar coding options for a particular application

<table>
<thead>
<tr>
<th></th>
<th>Dynamic Data required</th>
<th>Encoded Data</th>
<th>Application Identifier (AI)</th>
<th>Recommended Symbology to Select From</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer unit³</td>
<td>mandatory</td>
<td>GTIN</td>
<td>(01)</td>
<td>EAN-13 and GS1 DataMatrix (for all dynamic information)</td>
</tr>
<tr>
<td></td>
<td>mandatory</td>
<td>Production date⁴</td>
<td>(11)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mandatory</td>
<td>Batch No.</td>
<td>(10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mandatory*</td>
<td>Expiry date</td>
<td>(17)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>optional</td>
<td>Serial No.</td>
<td>(21)</td>
<td></td>
</tr>
<tr>
<td>Trade unit</td>
<td>mandatory</td>
<td>GTIN</td>
<td>(01)</td>
<td>GS1-128 and GS1 DataMatrix</td>
</tr>
<tr>
<td></td>
<td>Production date⁴</td>
<td>(11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Batch No.</td>
<td>(10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>optional</td>
<td>Serial No.</td>
<td>(21)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mandatory*</td>
<td>Expiry date</td>
<td>(17)</td>
<td></td>
</tr>
<tr>
<td>Pallet (logistic unit)</td>
<td>See chapter 5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

³ if the consumer unit is a trade unit, then the coding standards for trade units apply.

⁴ Production date is per definition equivalent to release date and is coded with AI (11).

* if regulatory requirement
5. How to Number and Bar Code Logistic Units

5.1 Serial Shipping Container Code (SSCC)

A logistic unit is an item of any composition established for transport and/or storage, which needs to be managed through the supply chain.

There are also instances within the agro industry where the allocation of a GTIN is not feasible because the resulting permutations and combination of product is limitless and is generally governed by the customer’s order.

Mixed orders fall into this category; with customers able to pick and choose what is required and hence the allocation of a GTIN for each combination is unrealistic. With the use of scan packing, the solution for the marking of such a logistic unit is with the Serial Shipping Container Code.

The Serial Shipping Container Code (SSCC) is a reference number or license plate used to uniquely identify logistics units. The SSCC acts as a “reference key” which can be stored in a computer system to which information can be added and shared amongst trading partners as the logistics unit moves throughout the supply chain. This unique “license plate” provides the opportunity to track and trace logistic units in the supply chain.

Scanning the SSCC marked on each logistic unit allows the physical movement of units to be individually tracked and traced by providing an information flow. It also opens up the opportunity to implement a wide range of applications such as cross docking, shipment routing, automated receiving etc.

The SSCC is used to uniquely identify goods on the way from sender to final recipient, and can be used by all participants in the transport and distribution chain. Each shipping container or logistic unit, at the time of its creation, is uniquely identified by the sender with an SSCC. A label encoding the SSCC is applied to the logistic unit using the appropriate AI and the GS1-128 Bar Code or EPC/RFID.

The SSCC uniquely identifies the entity (typically the shipping container or logistic unit to which the SSCC is applied) for the lifetime of that unit.

Figure 12: The use of the SSCC throughout the supply chain

<table>
<thead>
<tr>
<th>Supplier</th>
<th>Transporter</th>
<th>Distributor</th>
<th>Transporter</th>
<th>Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Applies original SSCC</td>
<td>Uses SSCC for internal controls and tracing</td>
<td>Receives SSCC Uses SSCC for internal controls and for outbound shipments</td>
</tr>
</tbody>
</table>
It is essential that the recipient, logistics service provider, distributor or customer of the transport unit with the SSCC attached, receives prior advice about the details of the transport unit and the SSCC. This advice is usually communicated via eMessaging, which is the computer-to-computer exchange of business messages in a standard format.

There may be instances where all parties relevant to a particular shipment are not fully capable of eMessaging and where only some electronic messages are being exchanged. In this situation there may be a requirement to add additional information to the logistics label to facilitate the process of the logistic units through the supply chain. Alternatively the whole supply chain may be fully capable of eMessaging and the whole suites of shipping messages are being exchanged.

5.2 How to Allocate the Serial Shipping Container Code (SSCC)

The SSCC should be handled as an eighteen digit non-significant number uniquely identifying the unit to which it is attached. The company responsible for the marking of the logistic unit is responsible for issuing the SSCC.

The format of the Serial Shipping Container Code is as follows:

![Figure 13: Structure of the SSCC](image)

Table 1: Structure of the SSCC

<table>
<thead>
<tr>
<th>Extension Digit</th>
<th>GS1 Company Prefix Serial reference</th>
<th>Check Digit</th>
</tr>
</thead>
<tbody>
<tr>
<td>N_1</td>
<td>$N_2 \ N_3 \ N_4 \ N_5 \ N_6 \ N_7 \ N_8 \ N_9 \ N_{10} \ N_{11} \ N_{12} \ N_{13} \ N_{14} \ N_{15} \ N_{16} \ N_{17}$</td>
<td>N_{18}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extension Digit</th>
<th>A digit (0-9) used to increase the capacity of the Serial Reference within the SSCC. The company that constructs the SSCC assigns the extension digit to the logistic unit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>GS1 Company Prefix</td>
<td>The GS1 Company Prefix is allocated by GS1 Member Organizations. It makes the SSCC unique worldwide but does not identify the country of origin of the unit.</td>
</tr>
<tr>
<td>Serial Reference</td>
<td>A Serial Reference depends on the length of the GS1 Company Prefix and uniquely identifies each transport package or logistic unit. The method used to allocate a Serial Reference is at the discretion of the company coding the package.</td>
</tr>
<tr>
<td>Check Digit</td>
<td>Calculated using a mathematical formula.</td>
</tr>
</tbody>
</table>
5.3 The Logistics Label

The various trading partners involved in a distribution channel have different information needs. The information flow, which accompanies the physical flow of goods, is communicated between trading partners by various means. Electronic Commerce, or eMessaging, is the way to transmit information along the supply chain.

In practice, however, fully automated communication channels, which make it possible to rely exclusively on electronic files for retrieving information on the movements of goods, are not always available.

For this reason, there is a need to indicate relevant information on the goods themselves, in addition to their identification. The various fields of information need to be organised in a standardized way in order to facilitate their interpretation and processing by all trading partners in the supply chain.

The purpose of the GS1 Logistics Label is to provide information about the unit to which it is fixed, clearly and concisely. The core information on the label should be represented both in machine (bar code) and human readable form. There may be other information, which is represented in human readable form only.

This GS1 Logistics Label can be applied to a single item, or a grouping of several items made up to facilitate the operation of handling, storing and shipping. This can be:

- A carton
- A pallet
- A group of shrink wrapped units
- A tray
- A container or a co-pack
- Or any other similar type of packaging created for the purpose of handling, storing or shipping.

The following information is a reference for the design of logistics labels. Application Identifiers (AIs) and the GS1-128 Symbology are important components of logistics labels and apply to all of the specifications relating to these labels.

The structure and layout for logistics labels is explained, however, emphasis is given to the basic requirements for practical application in an open trade environment. The major areas include:

- the unambiguous identification of logistics units
- the efficient presentation of text and machine readable data (bar codes)
- the information requirements of key partners in the supply chain – suppliers, customers and carriers
- technical parameters to ensure systematic and stable interpretation of the labels

This information is applicable to any type of logistic unit marked with a Serial Shipping Container Code (SSCC), which is used in logistic and transport applications where there is a need to track and trace individual units or a grouping of units being a part of the same transport transaction.

5.3.1 Components of the GS1 Logistics Label

Information represented on GS1 Logistics Labels has two basic forms:

- Information required to be utilised by people – usually comprising text and graphics, e.g. to and from addresses
- Bar codes (machine readable form) – a secure and efficient method of conveying structured data

The human readable text allows general access to basic information at any point in the supply chain. However, both methods of information representation provide value to the GS1 Logistics Label and often co-exist on the same label.

The mandatory field for all logistics labels is the Serial Shipping Container Code (SSCC) represented by the Application Identifier (00). The SSCC is a unique identification number assigned to each specific logistic unit. In principle the SSCC is sufficient for all logistic applications.

In an environment where eMessaging is used to transmit the detailed information pertaining to each logistic unit, or where the information is already within a database, the SSCC acts as the reference point to information.
However, when eMessaging is not available at each point in the supply chain, or when redundancy is desired, certain additional elements of information are desirable. Each of these is also represented through the use of Application Identifiers (AIs).

5.3.2 Label Design
The design of the logistics label accounts for the supply chain process by grouping information into three logical sections. A section is a logical grouping of information that is generally known at a particular time.

Figure 14: Example of trade unit label and possible location on physical item
5.3.3 Label Dimensions
The physical dimensions of the label are determined by the company applying the label to the logistic unit. However, the size of the label should be consistent with the information required in all sections of the label.

The business requirements for most users of GS1 Logistic Labels are met by using a pallet label only.

5.3.4 Technical Specifications
The following sections identify specific aspects of the format of the logistics label to assist in the initial processes of development. Not all technical aspects have been provided within this document and companies should ensure that they contact their local GS1 organization for further information.

5.3.4.1 Bar Codes
The GS1-128 Bar Code shall be used for all information on the GS1 Logistics Label.

The number of GS1-128 Bar Codes may be minimised by using concatenation (stringing data elements together) wherever possible. When not possible due to constraint of label size, data can be represented in multiple bar codes. The sequence of the bar coded data elements is irrelevant in terms of interpretation.

Note: The exception is the SSCC, which is the identifier for the logistic unit and the most fundamental element of the label. Due to the larger magnification recommended for the SSCC, concatenation is not feasible on a standard width label.

5.3.4.2 Bar Code Orientation and Placement
Bar codes shall be in picket fence orientation on logistic units, i.e. the bars and spaces shall be perpendicular to the base on which the logistic unit stands. In all cases, the SSCC shall be placed in the lowest portion of the label.
5.4 GS1 Logistics Label Formats for the Agro Industry

As described in Section 5.1 there is the ability to identify logistic units with the use of the Serial Shipping Container Code (SSCC). Where companies and/or industry sectors are not fully capable of eMessaging there is often a need to identify additional data represented on the GS1 Logistics Label to assist processing of shipments through the supply chain.

The following section describes the minimum data set required on a GS1 Logistics Label for the Agro Industry for use on logistic units of the following configuration:

- **Logistic unit containing the same trade items – Standard pallet, homogenous in product and batch**
 This label format would be used in the instance where the trade items carry the same GTINs within the logistics unit. Data on this label is only applicable where the GTINs, batch number and expiry dates are all the same on the individual trade items, for example a pallet of 20 cartons of plastic cups. The logistics unit could consist of either a standard grouping of identical trade items or a standard mix of trade items.

- **Logistic unit containing the same trade items – Standard pallet, homogenous in product, different in batch**
 This label format would be used in the instance where the trade items carry the same GTINs within the logistics unit. Data on this label is only applicable where the GTINs are all the same on the individual trade items.

- **Logistic unit containing the same trade items – Non-standard pallet**
 This label format would be used in the instance where the trade items carry the same GTINs within the logistic unit. Data on this label is only applicable where the GTINs are all the same on the individual trade items.
• **Mixed pallet on the logistic unit**
 When an order is picked and packed and is a mix of various trade items then label format can be used. Note full use of eMessaging is required to advise the customer of the information linked to the SSCC.

• **Where full eMessaging is applicable**
 In this example full use of eMessaging is applicable between trading partners. Here all the information is linked to the SSCC and this acts as the key to access all information about the logistic unit. This label format can be used on all types of logistic units from, standard groupings to mixed trade items. The only requirement is that eMessaging is fully operational between all trading partners throughout the supply chain.
<table>
<thead>
<tr>
<th>Type of logistic unit</th>
<th>Data</th>
<th>Encoded Data</th>
<th>Application Identifier (AI)</th>
<th>Symbology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard pallet</td>
<td>mandatory</td>
<td>SCC</td>
<td>(00)</td>
<td>GS1 DataMatrix and GS1-128</td>
</tr>
<tr>
<td>Homogenous in batch and product</td>
<td>GTIN</td>
<td>(01) or (02) + (37)</td>
<td>(11)</td>
<td>(10)</td>
</tr>
<tr>
<td></td>
<td>Production date</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Batch No.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>optional</td>
<td>Expiry date</td>
<td>(17)</td>
<td></td>
</tr>
<tr>
<td>Standard pallet</td>
<td>mandatory</td>
<td>SCC</td>
<td>(00)</td>
<td>GS1 DataMatrix and GS1-128</td>
</tr>
<tr>
<td>Homogenous in product, different in batch</td>
<td>GTIN</td>
<td>(01) or (02) + (37)</td>
<td>(11)</td>
<td>(10)</td>
</tr>
<tr>
<td></td>
<td>Production date</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Expiry date</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>optional</td>
<td>Production date</td>
<td>(11)</td>
<td>(17)</td>
</tr>
<tr>
<td></td>
<td>Expiry date</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-standard pallet</td>
<td>mandatory</td>
<td>SCC</td>
<td>(00)</td>
<td>GS1 DataMatrix and GS1-128</td>
</tr>
<tr>
<td></td>
<td>GTIN</td>
<td>(02) + (37)</td>
<td>(11)</td>
<td>(10)</td>
</tr>
<tr>
<td></td>
<td>Production date</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Batch No.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>optional</td>
<td>Expiry date</td>
<td>(17)</td>
<td></td>
</tr>
<tr>
<td>Mixed trade item</td>
<td>mandatory</td>
<td>SCC</td>
<td>(00)</td>
<td>GS1 DataMatrix and GS1-128</td>
</tr>
</tbody>
</table>

For additional information, all Application Identifiers (AI) described in the current GS1 General Specifications must be used. For further information please contact your local GS1 organization.

5 Will be replaced by Release date
5.4.1 Location of Logistic Unit Label

The bar codes on units intended for General Distribution should be upright (i.e. in picket fence orientation) and placed on the sides of the unit. Each item shall have at least one bar code, and two are recommended.

In the event that the product is not a standard carton or pallet of uniform shape, all efforts should be made to meet the recommendations. For shipments with an irregular or unconventional shape, common sense should direct the location of any logistics labels to ensure that the label is visible at all times.

Note: If only one label is applied, the side chosen needs to take into consideration the way the pallet will be picked. In this instance the label should be applied to the “pick side” of the pallet. Before taking this option, consultation with all trading partners is advised.

Most of our cartons are printed or labelled with DG informations which could be invisible because of sticking the case labels. Our recommendation is to place the carton label on the top of the case. This is state of the art for automatic logistic code reading processes.
If the unit is already marked with an EAN-13 Bar Code for trade item identification purposes, the label should be placed so as not to obscure the pre-existing bar code. The preferred location of the label in this case is to the side of the pre-existing bar code, so that a consistent horizontal location is maintained.

5.4.2 Pallets
For all types of pallets, including full pallets containing individual trade items and singular trade items bar codes should be placed at a height between 400mm and 800mm from the base of the unit. Including Quiet Zones, the bar codes should be no closer than 50mm from any vertical edge to avoid possible damage.

For pallets less than 400mm in height, the bar codes should be placed as high as possible whilst protecting the logistics label.

Figure 16: Locations of the Logistics Label on a carton or unit less than 1 metre in height

Figure 17: Location of the GS1 Logistics Label on pallets
Annex

GS1 Application Identifiers used in the Agro business industry:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Serial Shipping Container Code</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>Global Trade Item Number</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>GTIN of contained trade items</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Batch/Lot number</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Production date⁶</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Expiry date</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Serial number</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Count of Trade items</td>
<td></td>
</tr>
<tr>
<td>410</td>
<td>Ship to - Deliver to Global Location Number</td>
<td></td>
</tr>
</tbody>
</table>

The typical matrix size for consumer packages is 26 x 26. Smaller matrix sizes are acceptable provided that the data capacity for the encoded data is sufficient. Preferred are quadratic codes. In cases where packaging design or printing technology needs rectangular codes they can be used as well.

<table>
<thead>
<tr>
<th>Symbol Size Square</th>
<th>Dimension (mm) Consumer Unit</th>
<th>Data Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row x Column</td>
<td>Typical x = 0,35</td>
<td>Min x = 0,25</td>
</tr>
<tr>
<td>26 x 26</td>
<td>9,1</td>
<td>6,5</td>
</tr>
</tbody>
</table>

Symbolism ISO/IEC16022. Error correction according ECC200. Printing quality ISO/IEC 15415/Minimum grading ANSI D > 0,5. To ensure a correct readability across the supply chain the aspired quality should be at least ANSI C > 1,5.

⁶ Will be replaced by Release date
Afterword

The new release of CRISTAL common practices provides state of the art technology to reflect changes and requirements in crop protection and seed business globally. Enhancement of these common practices allows the implementation of a full supply chain visibility helping to significantly improve product safety and stewardship and providing new services. The CRISTAL is a common practice which is open to all involved parties.

The development of Cristal common practices have been sponsored by the European Crop Protection Association and CropLife International.

DISCLAIMER

The technical information contained in this document is provided to CropLife International members, non-members, external manufacturers and a broader public audience. While CropLife International make every effort to present accurate and reliable information in the guidelines, CropLife International does not guarantee the accuracy, completeness, efficacy, timeliness, or correct sequencing of such information. Use of such information is voluntary.

CropLife International, including its employees and committee members, assumes no responsibility for consequences resulting from the use of the information herein, or in any respect for the content of such information, including but not limited to errors or omissions, the accuracy or reasonableness of factual or scientific assumptions, studies or conclusions. CropLife International is not responsible for, and expressly disclaims all liability for, damages of any kind arising out of use, reference to, or reliance on information provided in the guidelines. No guarantees or warranties, including but not limited to any express or implied warranties of merchantability or fitness for a particular use or purpose, are made by CropLife International with respect to such information.
Helping Farmers Grow

CropLife International is the voice of the global plant science industry. It champions the role of agricultural innovations in crop protection and plant biotechnology in supporting and advancing sustainable agriculture; helping farmers feed a growing population while looking after the planet; and progressing rural communities. The world needs farmers, and farmers need plant science. CropLife International is proud to be at the heart of helping farmers grow.